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Within the general framework of the relativistic Schrödinger theory, a new wave
equation is identified which stands between Dirac’s four-component spinor
equation and the scalar one-component Klein–Gordon equation. It is a two-
component, first-order wave equation in pseudo-Riemannian spacetime which on
one hand can take account of the Zitterbewegung (similar to the Dirac theory),
but on the other hand describes spinless particles (just like the Klein–Gordon
theory). In this way it is demonstrated that spin and Zitterbewegung are
independent phenomena despite the fact that both effects refer to a certain kind
of internal motion. An extra variable for the internal motion can be introduced
(similarly as in the Dirac theory) so that the new wave equation is reduced to
the Klein–Gordon case when the internal variable takes its trivial value and the
internal motion is not excited. The internal degree of freedom admits the occurence
of quasi-pure states (i.e., a special subset of the mixtures), which undergo a
transition to a pure state in finite time. If the initial configuration is already a
pure state, this transition occurs in the form of a sudden jump to the final pure
state. The coupling of the new wave field to gravity via the Einstein equations
makes the Zitterbewegung manifest through the corresponding trembling of the
extension of a Friedmann–Robertson–Walker universe.

1. INTRODUCTION

When the Zitterbewegung (i.e., trembling motion) of the relativistic
electron was discovered in the early days of quantum theory [1], this phenome-
non appeared as a kind of curiosity which even further complicated the
difficult situation with the interpretation of the new theory. Many problems
concerning the Zitterbewegung have since been settled and it is nowadays
understood as a typical quantum effect of truly relativistic nature which is
treated in any serious textbook about relativistic quantum mechanics (e.g.,
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ref. 2). In short, the relativistic nature of the Zitterbewegung is due to the
fact that in Dirac’s theory the electron wave function must be represented
by a four-component spinor field which is transformed under the action of
the group Spin(1,3) when a Lorentz transformation is applied to the coordinate
basis of space-time. This kinematical necessity of dealing with a four-compo-
nent wave function is then made plausible physically by saying that one
needs two components for the particle states with its two spin orientations
and two further components for the corresponding antiparticle states. The
particle states are then endowed by the Dirac equation with a positive energy
E+ , Mc2 and the antiparticle states with a negative energy E2 , 2Mc2 so
that certain bilinear densities, e.g., the current density jm 5 c ? gm ? c, receive
a trembling component due to the difference frequency

vz 5
E+ 2 E2

"
, 2Mc2

"
(I.1)

Clearly, such a frequency will be observed for annihilation radiation, where
the mass energy of an electron–positron pair is converted to electromagnetic
radiation energy, but this energy vz cannot be observed during single-particle
processes, e.g., for transitions between stationary states of the electron in the
Coulomb field of a nucleus. Thus one may conclude that, for single-particle
processes, the Zitterbewegung is some kind of artefact of the relativistic
theory with no observable consequences. However, such a conclusion would
be erroneous because the Zitterbewegung produces observable effects even
for single-particle processes, e.g., the energy level shifts via the Darwin term
[3]. Furthermore, the Zitterbewegung has been used for an intuitive deduction
of the Lamb shift [4].

However, in view of the obvious physical relevance of the Zitterbeweg-
ung, it must appear somewhat strange that the relativistic nature of this
phenomenon has not been studied more thoroughly in the literature; and it
was not until recently that the Zitterbewegung received new interest and
attention [5–7]. In fact, there are some unclarified questions which mainly
refer to the circumstance that the Zitterbewegung was discovered in connec-
tion with the spin of the electron. On the other hand, it is always emphasized
that the Zitterbewegung comes about through the superposition of the particle
and antiparticle states, thus mixing up the relativistic and spin effects (actually
we shall show that Zitterbewegung also occurs for mixtures and is endowed
here with an even richer structure than for the pure states). But spin and
relativity are two completely different things and are coupled merely inciden-
tally in the Dirac theory via the homomorphism of the Lorentz group SO(1,3)
and spin group Spin(1,3). Therefore, if it is true that the Zitterbewegung is
a truly relativistic effect, then it should occur also for spinless (but relativistic)
particles, e.g., for the scalar particles which are described by the Klein–
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Gordon theory. However, such an important question as the occurrence of
Zitterbewegung within the framework of the Klein–Gordon theory is scarcely
studied in textbooks; sometimes one finds the side remark that the Foldy–
Wouthuysen technique yields some expansion term which can be considered
as the analogue of the Darwin term in the Dirac theory [3].

Thus we are not allowed to conclude that the Zitterbewegung can exist
only in connection with the spin phenomenon. In order to avoid misunder-
standings let us remark here that the Klein–Gordon theory also admits solu-
tions of oscillatory character occuring with the Zitter frequency vz (mentioned
above), but these motions are then of external character, in contrast to the
internal nature of the trembling motions for the Dirac theory. Observe that,
in this latter (internal) case, there always exist external variables (e.g., four-
momentum pm) which do not take part in the trembling motion! But even if
we restrict the notion of Zitterbewegung to the internal motions, it is not true
that spin and Zitterbewegung must necessarily occur simultaneously. In order
to become convinced of this assertion, it will be sufficient to present a new
relativistic wave equation which stands “between” the Klein–Gordon equation
(no spin) and the Dirac equation (spin plus Zitterbewegung) in the sense
that this new equation is then capable of taking account of the internal
Zitterbewegung of spinless particles. The point here is that the new wave
equation is capable of describing particle–antiparticle mixtures, whereas the
conventional Klein–Gordon theory can deal only with superpositions of
particle–antiparticle states. The additional mixture degree of freedom can
then be made responsible for the emergence of internal Zitterbewegung. The
main aim of the present paper is to present this desired new wave equation,
together with a thorough study of its Zitterbewegung properties. These latter
properties may be tested conveniently by coupling the quantum matter to
gravity in the well-known Einsteinian way so that the Zitterbewegung
becomes physically evident by the corresponding trembling of the size of
the universe.

The general technique for obtaining these results refers to the relativistic
Schrödinger theory (RST), which provides us with a very general framework
for all the relativistic wave equations [8–11]. Indeed, these latter equations
turn out to be special realizations of RST according to which kind of typical
fiber is applied for the construction of the vector bundle in which the wave
functions c(x) are living as the bundle sections. For instance, the four-
component Dirac theory has been revealed as a C4-realization of RST [9,
11–13]; the Klein–Gordon–Higgs equations for an SU(2) doublet are found
to be a C2-realization of RST [10, 14]; the simplest case is the ordinary
Klein–Gordon theory for a single scalar particle which is a C1-realization
[15]. Clearly if one wants to treat a scalar two-particle system, one has to
resort again to a C2-realization [16], which, however, differs from the SU(2)
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doublet case [10, 14] by the choice of the gauge group [i.e., U(1) 3 U(1)
for the two-particle system in place of SU(2) for the doublet system]. The
desired new wave equation turns out to be the R2-realization of RST. Observe
here that the R2-realization is based upon the use of real two-component
wave functions c(x) 5 (w1(x), w2(x)), whereas the C1-realization is based
upon one-component complex wave functions c(x) 5 w1(x) 1 iw2(x), but
nevertheless both realizations are not equivalent! Rather, the R2-realization
yields a much richer theory which embraces the C1-realization (i.e., the
ordinary Klein–Gordon theory) as a special subcase, namely as the subset
of the pure states. This point-particle subcase is just obtained by “freezing”
the internal degree of freedom in the more general R2-realization.

The arrangement for presenting all these results is the following: First,
we briefly sketch the notion of Zitterbewegung from two different viewpoints
of the quantum formalism: probabilistic and fluid-dynamic (Section 2). Next,
we generalize RST, which up to now has been written down only for complex-
valued realizations. In this generalized version, RST can have both complex-
valued and real-valued realizations, where the latter are then used in the
present paper in order to study the Zitterbewegung (Section 3). Since we
want to demonstrate a physical effect of the Zitterbewegung, we consider
the dynamics of a Friedmann–Robertson–Walker universe which is filled
with the trembling quantum matter. The geometric prerequisites for such
a model are collected in Section 4. Then the C1-realization of RST (i.e.,
Klein–Gordon theory) is studied in detail in order to reveal its special charac-
ter within the larger formalism. These results are used later to demonstrate
the absence of internal motions in the ordinary Klein–Gordon theory (Section
5). Finally, the R2-realization is studied in great detail with respect to the
emergence of the Zitterbewegung (Section 6). Since the R2-realization does
account for the Zitterbewegung (both internal and external), but not for the
spin, it is thus demonstrated that these two phenomena of spin and internal
Zitterbewegung are completely independent things. In addition to the exis-
tence of Zitterbewegung with its oscillatory character, the R2-realization
predicts also the occurence of nonoscillatory, jumplike transitions from one
pure state to another one (Section 7). But the intermediate field configurations
are themselves not pure states, but a special type of mixture, the “quasi-
pure” states. Such a behavior is not possible for a strictly unitary time
evolution (as encountered in conventional quantum theory when using a
Hermitian Hamiltonian).

2. ZITTERBEWEGUNG

From the many debates about the right interpretation of the quantum
mechanical formalism [17], one should have learnt that a mathematical for-
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malism generally admits more than one physical interpretation. Nowadays,
most physicists would adhere to Born’s probabilistic interpretation of the
quantum formalism, which, however, seems to suffer from certain difficulties,
too (see different views of the measurement problem in ref. 18). In contrast,
the relativistic Schrödinger theory is a fluid-dynamic approach to the quantum
world; but since both approaches rely upon the same mathematical formalism
(i.e., Hilbert spaces, wave functions, operators, etc.), or even upon the same
wave equations for one-particle systems (e.g., Klein–Gordon, Dirac), every
feature of the formal apparatus can be interpreted from either of the two
different viewpoints. Therefore let us briefly sketch the one-particle Zitterbe-
wegung with respect to both interpretations.

2.1. Probabilistic Approach

Today we know that the Zitterbewegung is a truly relativistic effect,
but, paradoxically, Schrödinger [1] discovered this phenomenon not by con-
sidering Dirac’s equation in its manifestly invariant form

i"gm$mc 5 Mcc (2.1)

but by recasting this into the nonrelativistic form

i"
­c
­t

5 Ĥ ? c (2.2)

which he himself had proposed previously. Probably, he preferred such a
procedure because one could then describe the particle by means of the well-
known point-particle concepts of nonrelativistic mechanics such as position
›x , momentum ›p , energy E, etc., albeit in operator form ( ›x̂ , ›p̂ , Ĥ, say). The

corresponding observable quantities could simply be obtained as an ensemble
average with respect to the initial physical state .c(0)&, e.g., for position

›x (t) 5 ^c(0). ›x̂ .c(0)& (2.3)

where the operators moved in the Heisenberg picture according to

d ›x̂ (t)
dt

5
i
"

[Ĥ, ›x̂ (t)] (2.4)

But surprisingly enough, when using the Dirac Hamiltonian for a free
particle

Ĥ 5 c ›a ? ›p 1 b ? Mc2 (2.5)

Schrödinger did not find from (2.4) the velocity ›ẋ being proportional to
momentum ›p , but instead he was forced to identify the velocity with the
(4 3 4) matrix ›a ,
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d ›x̂
dt

5 c ›a (2.6)

This result was a great surprise because the momentum turned out to be a
true constant of the motion,

d ›p̂ (t)
dt

5
i
"

[Ĥ, ›p̂ (t)] [ 0 (2.7)

as must be expected for a free particle. The generally accepted interpretation
[2] of these curious results is based upon the formal solution ›x̂ (t) of Eq. (2.6):

›x̂ (t) 5 ›x̂ (0) 1 c2Ĥ 21 ? ›p̂ ? t 1 i
"c
2Ĥ

exp122iĤt
" 2 ? ›ã (0) (2.8)

Here the uniform motion (,t) of the particle is superposed by an oscillatory
component of the Zitter frequency vz (, 2Mc2/") and of amplitude "/2Mc,
i.e., the Compton length. Thus, these results seem to suggest that it is only
the average path of the free particle which is a straight line (external motion),
but the actual path resembles more some kind of trembling within a narrow
tube of Compton width (internal motion) around that average path; see the
illustrative drawing in ref. 2.

Clearly, it is very tempting now to think that the spin is a kind of residual
regularity of the rather irregular trembling motion. Indeed, it is easily verified
that the orbital angular momentum

›
L itself is not a constant of the motion,

d
›

L
ˆ

(t)
dt

5
i
"

[Ĥ,
›

L
ˆ

(t)] Þ 0 (2.9)

but only the total angular momentum
›

J :
›

J
ˆ

7
›

L
ˆ

1
›

S
ˆ

(2.10a)

›
S
ˆ

7 2
i"
4

( ›a 3 ›a ) (2.10b)

i.e., we have the angular momentum conservation law

d
›

J
ˆ
(t)

dt
5

i
"

[Ĥ,
›

J
ˆ
(t)] [ 0 (2.11)

The equation of motion for the spin
›

S
ˆ

(t) is found as

d
›

S
ˆ

(t)
dt

5
i
"

[Ĥ,
›

S
ˆ

(t)] 5 c ›a 3 ›p̂ (2.12)

so that the projection of the spin onto the momentum ›p remains constant in
time. The solution

›
S
ˆ

(t) is found to have a Zitter component, too:
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›
S
ˆ

(t) 5
›

S
ˆ

(0) 1
›

S
ˆ̇

(0) exp 122iĤt
" 2 ?

"

2Ĥ
(2.13)

which seems to confirm the supposition that spin and Zitterbewegung essen-
tially might be the same thing. However, considering this question now from
the fluid-dynamic point of view for other wave equations, will demonstrate
the independency of both phenomena. As preparation let us first keep for a
moment to the Dirac theory in order to inspect the specific way in which
the Zitterbewegung arises from the fluid-dynamic point of view.

2.2. Fluid-Dynamic Approach

Naturally, the observable quantities for the fluid-dynamic approach can-
not coincide with those of point-particle mechanics (classical or quantum
mechanical) which have been used for the preceding probabilistic approach.
Rather, one has to think now in terms of physical densities, which, however,
are again constructed by Hermitian operators and the wave functions c(x),
e.g., for the current density jm(x) in Dirac’s theory

(D)jm(x) 7 c(x) ? gm ? c(x) (2.14)

Here the Dirac matrices {gm} play the part of a velocity operator [11].
Nevertheless in the fluid-dynamic approach, too, there arises the phenomenon
of Zitterbewegung as an internal motion quite analogously as in the probabilis-
tic approach. One could even say that these phenomena can be treated much
more rigorously and explicitly in fluid-dynamic terms because one can intro-
duce here extra dynamical variables for the internal degree of freedom in a
very natural way.

For instance, it has been demonstrated that the Dirac current jm, (2.14),
can be reparametrized in terms of an orthonormal tetrad {bm; g̃m, p̃m, l̃m}
and of scalar fields {r, k, x, z} in such a way that the timelike flow vector
bm and the scalar density r (5c ? c) describe the external motion, whereas
the internal motion is characterized by the spacelike triad {g̃m, p̃m, l̃m} and
by the remaining scalar fields {k, x, z}:

(D)jm 5 r(bm ? cosh 2k 1 (g̃m ? cos x

1 p̃m(1 2 z2)1/2 ? sin x) ? sinh 2k) (2.15)

[12, 13, 19]. The “strength” of excitation of the internal degree of freedom
is described by the scalar k, so that for k ⇒ 0 the current jm is reduced to
its purely convective constituent, i.e., we are left with the external motion:

(D)jm ⇒ r ? bm (2.16)

However, for .k. . 0 the internal motion is excited and the current jm, (2.15),
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develops a trembling mode in the 2-plane spanned by the 2-frame {g̃m, p̃m}.
Obviously, this is the fluid-dynamic counterpart of the Zitterbewegung (2.8)
in the point-particle picture. This supposition is readily confirmed by an
explicit computation of the space-time behavior of the trembling phase x for
a free particle [13]:

x ⇒ 2Mc
"

bmxm (2.17)

This nice result says nothing else than that the previous Zitter frequency vz

sets the time scale for this trembling motion:

ẋ 7 bm ­mx 5
2Mc

"
[

vz

c
(2.18)

Cf. (1.1).
But the essential point is now that one is not allowed to conclude that

this Zitterbewegung can occur only for spinning particles. Actually, in Section
6 we will elaborate the Zitterbewegung for the current jm of a scalar particle
and we will see that also in that case the current jm can be split into two
parts. In Dirac’s theory of spinning particles, this splitting refers to the
emergence of a convection part (C)jm and a polarization part (P)jm:

(D)jm 5 (C)jm 1 (P)jm (2.19)

where

(C)jm 5 r ? bm ? cosh 2k (2.20a)

(P)jm 5 r ? (g̃m ? cos x 1 p̃m(1 2 z2)1/2 ? sin x) ? sinh k (2.20b)

See the discussion of the Dirac case in ref. 11.
Besides the current density jm, there are further physical densities of

relevance with respect to Zitterbewegung. Let us mention here only the
energy-momentum density Tmn carried by the wave function c. This object
Tmn becomes especially simple for the special situation when the quantum
fluid is distributed homogeneously and isotropically over a Friedmann–
Robertson–Walker universe; cf. (4.3) below. The reason is that only the
energy density U and pressure P enter this energy-momentum density Tmn

and therefore these two densities U and P are sufficient to determine the
expansion dynamics of the universe according to Einstein’s equations. But
clearly, when U and P are infected by the Zitterbewegung, then the “radius”
5 of the universe will react also by developing a trembling mode and exactly
this has been observed by means of numerical solutions for the coupled
Dirac–Einstein equations [19–21]:
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U ⇒ UD 5 3"cr1Mc
3"

1
cos x
25 2 (2.21a)

P ⇒ PD 5 "cr
cos x
25

(2.21b)

Here, the trembling variable x obeys the equation of motion

ẋ 7 bm ­mx 5
Mc
" 12 1 3

cos x
5 2 (2.22)

which explicitly displays the gravitational effect being superimposed over the
free-particle case, (2.18). Thus both densities U and P are actually trembling
roughly with the Zitter frequency vz and this prevents the universe from
collapsing. The interesting point is here that this same effect also is obtainable
without resorting to spinning matter, namely by evoking the R2-realization
of RST; see the results in Section 7.

3. GENERALIZING RST

The discussion of the analogous trembling effects within the framework
of RST is facilitated considerably by recasting this theory into a more general
form so that its potential of covering both real and complex realizations can
be better elucidated. Originally, the RSE was set up in the form [8–10]

i"c$mc 5 *m ? c (3.1)

on account of its formal analogy to the nonrelativistic Schrödinger equation

i"
­c
­t

5 Ĥ ? c (3.2)

But by this procedure it is unnecessarily suggested that the wave function c
should always be an element of a complex space, which, however, is too
restrictive. The motivation for adopting Eq. (3.1) as the true relativistic
generalization of the nonrelativistic conventional form (3.2) was based upon
the conviction that the motion of relativistic matter should also be organized
by some kind of “Hamiltonian” (*m) which on the one hand respects the
gauge nature of the interactions of matter and on the other hand guarantees
the validity of certain conservation laws (e.g., for charge, energy-momentum,
etc.). As a consequence, the relativistic Hamiltonian *m, (3.1), in contrast
to its nonrelativistic counterpart Ĥ, (3.2), had itself to be considered as a
dynamical object of the theory and therefore must first be determined from
its field equations (see below). But the crucial point now is that the RSE
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(3.1) is meaningful only if the Hamiltonian *m is taken to be non-Hermitian
(*m Þ *m). Therefore it may retrospectively appear somewhat artificial to
include the imaginary unit (i) into the RSE and it seems more adequate to
rewrite that equation simply as

"c$mc 5 *m ? c (3.3)

If one wants, one can restore the old form (3.1) from the new one (3.3) by
means of the replacement *m → 2i*m, but the latter form (3.3) appears
as the more general one because it suggests we consider also real-valued
realizations of RST. Indeed, if one starts with the old form (3.1), one feels
automatically forced to think of the Hamiltonian *m (Þ *m) as a gl(N, C)-
valued 1-form, whereas the new form (3.3) additionally admits also gl(N,
R)-valued Hamiltonian 1-forms. Subsequently, we will compare the complex
1-dimensional realization [⇒ *m P gl(1, C)] to the real 2-dimensional
realization [⇒ *m P gl(2, R)] and we will benefit by the inequivalence of
both realizations. As a preparation, let us first reformulate the RST from a
generalized point of view.

3.1. Conservation Laws

As mentioned above, the point with RST is that it represents a rather
general framework for relativistic fields which is required to guarantee only
a few characteristics of the motion of matter (i.e., conservation laws), but
otherwise admits a large variety of field configurations. The most relevant
of the conservation laws are the following:

(i) The charge conservation laws:

Dmjam 5 0 (3.4)

(Dm jan 7 ¹m jan 2 jbnvb
am)

Here, the gauge currents jam are members of a gauge multiplet transforming
as usual with respect to some change of gauge (Sb

a):

j8am 5 jbmSb
a (3.5)

The representation S 5 {Sb
a} of the gauge group and the corresponding

bundle connection vb
am are Np-fold reducible for a system of Np particles [22].

(ii) The energy-momentum conservation law for closed systems:

¹mTmn 5 0 (3.6)

For the nonclosed matter subsystem, the source of the energy-momentum
density Tmn is the Lorentz force density fn,
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¹mTmn 5 fn (3.7)

where fn should be composed linearly of both the current densities jam and
of the field strength ^mn (5 bundle curvature) which is generated by the
gauge potential !m (5 bundle connection) in the usual way,

^mn 5 ¹m!n 2 ¹n!m 1 [!m, !n] (3.8)

Now in order to construct a matter field theory obeying all these require-
ments, one can write down the relativistic von Neumann equation for the
intensity matrix ( [as the mixture generalization of the pure states c, (3.3)]:

$m( 5
1
"c

(*m ? ( 1 ( ? *m) (3.9)

and then one can construct the physical densities (e.g., jam and Tmn) by means
of the following recipe:

jam 5 tr(( ? vam) (3.10a)

Tmn 5 tr(( ? 7mn) (3.10b)

Here, the physical densities are obviously obtained by forming the trace of the
operator product of the intensity matrix ( and the corresponding (Hermitian)
“observable,” e.g., the gauge velocity operators vam (5 vam) or the energy-
momentum operator 7mn (5 7mn). The physical densities fall into two sub-
classes, internal densities, which are gauge covariant (e.g., jam), and external
densities, which are gauge invariant and therefore may be considered as truly
observable quantities of the theory. Consequently, one will expect that the
total motion of the matter subsystem is composed of an internal part and an
external part, where the internal part is governed by the gauge nature of the
theory. Subsequently we shall demonstrate that this internal motion is the
kinematical origin of the Zitterbewegung.

But clearly, the kinematical ansatz (3.10) for the conserved quantities
is not sufficient to ensure the desired conservation laws (3.4) and (3.6)–(3.7).
Additionally, one must subject the observables to some kind of conservation
equations, e.g., for the velocity operators vam

$mvam 2 vbmvb
a
m 5 2

1
"c

(va
m ? *m 1 *m ? va

m) (3.11)

or similarly for the energy-momentum operator 7mn,

$m7mn 1
1
"c

(*m ? 7mn 1 7mn ? *m) 5 ^n (3.12)

where the force operator ^n generates the force density fn, (3.7), in the
usual way,
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fn 5 tr(( ? ^n) (3.13)

Observe here again that the conservation equation for an internal object, e.g.,
for vam, (3.11), requires the specification of a corresponding representation
{vb

am} of the gauge potential !m. This, however, can easily be obtained by
specification of the (anti-Hermitian) generators ta (5 2ta) of the gauge
group. More concretely, denote the structure constants of the gauge group
by Cab

c:

[ta, tb] 5 Cab
c tc (3.14)

and define the corresponding fiber metric gab for raising and lowering fiber
indices through

gab 5 2tr(ta ? tb) (3.15)

Then the desired representation {vb
am} of the gauge potential !m is given

simply by the covariant derivative of the generators ta, i.e.,

$mta 5 tb vb
am (3.16)

($mta 7 ­mta 1 [!m, ta])

Or, more explicitly, by means of the decomposition of !m,

!m 5 Aam ? ta (3.17)

we find the connection coefficients vb
am as

vb
am 5 AcmCc

a
b 2 tr(tb ? ­m ta) (3.18)

As an implication of this construction, the fiber metric gab, (3.15), is covari-
antly constant:

Dmgab [ 0 (3.19)

(Dmgab 7 ­mgab 2 gcbvc
am 2 gacvc

bm)

Subsequently, we shall treat the 1-dimensional Abelian groups U(1) and
SO(2) as simple examples for the gauge group, and correspondingly we
expect (quasi-) periodic Zitterbewegung on account of the compact topology
of these groups.

But now we have to face the problem of how to determine the velocity
operators vam and the energy-momentum operator 7mn in order that those
conservation equations (3.11) and (3.12) can be satisfied. This problem has
been dealt with in preceding papers, e.g., in ref. 10, and therefore it is sufficient
here to merely quote the results, adapted to the present generalization of
RST:
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vam 5 2
1

2Mc2 (ta ? *m 2 *m ? ta) (3.20)

7mn 5
1

2Mc2 (*m ? *n 1 *n ? *m 2 gmn(*l ? *l 2 (}c2)2)) (3.21)

Here } is the (Hermitian) mass operator which we consider covariantly
constant

$m} [ 0 (3.22)

so that its trace M

M 5
1
Nf

tr } (3.23)

is a constant mass parameter of the theory (Nf 5 tr 1 is the fiber dimension
for the system of Nf particles). However, the propositions (3.20)–(3.21) are
not yet the ultimate solution of the problem because the desired operators
vam and 7mn have been expressed merely in terms of the Hamiltonian *m

and this alone does not yet guarantee the validity of the conservation equations
(3.11) and (3.12). Obviously it becomes necessary to specify a suitable
conservation equation for the Hamiltonian *m itself [8, 10]:

$m*m 1
1
"c

*m*m 5 2"c1}c
" 2

2

(3.24)

Indeed one can easily show that both the conservation equations for vam,
(3.11), and 7mn, (3.12), are satisfied on account of the present postulate
(3.24), provided the mass operator is a gauge invariant:

[}, ta] 5 0, ∀a (3.25)

Furthermore, the force operator acquires the expected Lorentz-type form:

^n 5
"

2Mc
[*m ? ^mn 2 ^mn ? *m] (3.26)

The well-known Lorentz force density fn, (3.13), is then immediately obtained
from this result by decomposing the field strength ^mn in a similar way to
its potential !m, (3.17):

^mn 5 Famnta (3.27)

This then yields for the force operator (3.26) in terms of the velocity operators

^n 5 "cFamn ? vam (3.28)

which is nothing else than the operator version of the old Lorentzian idea
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that the force should be the product of field strength and velocity. Finally
the force density fn, (3.13), is also found to be of the expected form

fn 5 "cFamn ? jam (3.29)

where the previous definition (3.10a) for the current densities jam has been
applied.

3.2. Integrability Condition

Now that we can be sure that both conservation laws (3.4) and (3.6)–(3.7)
are safely valid in our theory, we can turn to the question of the existence
of solutions, both to the RSE (3.3) and to the relativistic von Neumann
equation (3.9). This leads us to the question of integrability conditions. For
instance, in order to be sure that a gauge potential !m really exists for the
field strength ^mn, (3.8), the well-known Bianchi identity must be satisfied:

$l^mn 1 $m^nl 1 $n^lm [ 0 (3.30)

Or, in order that the solutions c(x) to the RSE (3.3) are proper sections of
the corresponding vector bundle, they must obey the bundle identity

[$m$n 2 $n$m]c [ ^mn ? c (3.31)

Similarly, for the intensity matrix ((x) as a solution to the von Neumann
equation (3.9) we must have

[$m$n 2 $n$m]( [ [^mn, (] (3.32)

Consequently, the problem is now to construct the dynamics for the Hamilto-
nian *m in such a way that all these identities are automatically obeyed (by
the corresponding solutions of the theory). As was shown in preceding papers
[8, 10], this can be attained by completing the conservation equation for *m,
(3.24) by an additional curl relation, the integrability condition:

$m*n 2 $n*m 2
1
"c

[*m, *n] 5 "c ? ^mn (3.33)

Thus, the complete Hamiltonian dynamics consists now of the previous
conservation equation (3.24) and the present integrability condition (3.33).
Both these equations are needed to deduce the energy-momentum law (3.7),
or (3.12), respectively, with the Lorentz force given by its desired form (3.26),
or (3.29), respectively. However, the conservation equation (3.24) additionally
has a nice property, namely it ensures the validity of the Klein–Gordon
equation for the wave function c,
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$m$mc 1 1}c
" 2

2

? c 5 0 (3.34)

This is easily deduced from the original RSE (3.3) by differentiating once
more and applying the conservation equation (3.24). Through this procedure
it becomes clear that the KGE (3.34) inherits its conservative meaning from
the RST, namely as a selection principle for those field configurations which
obey the energy-momentum law. Perhaps this is the deeper meaning of all
the wave equations: namely to equip the waves with an energy-momentum
content Tmn in such a way that the energy-momentum law (3.7) holds.

For dealing with concrete problems, it is sometimes convenient to split
up the Hamiltonian *m into its anti-Hermitian part _m (5 2_m), the kinetic
field, and its Hermitian part +m (5 +m), the localization field:

*m 5 "c(_m 1 +m) (3.35)

The dynamical equations for *m, namely (3.24) and (3.33), can then be
transcribed to the corresponding equations for the (anti-)Hermitian parts _m

and +m. In this way, the conservation equation reads for _m

$m_m 1 {+m, _m} 5 0 (3.36)

and for +m

$m+m 1 _m_m 1 +m+m 5 21}c
" 2

2

(3.37)

Similarly, the integrability condition (3.33) reads for the anti-Hermitian
part _m

$m_n 2 $n_m 2 [_m, _n] 2 [+m, +n] 5 ^mn (3.38)

and for the Hermitian part +m

$m+n 2 $n+m 2 [+m, _n] 2 [_m, +n] 5 0 (3.39)

4. COSMOLOGICAL PRINCIPLE

Schrödinger’s treatment [1] of the Zitterbewegung apparently traces its
origin to the intrinsic spin structure of the Dirac equation. However, if it
turns out that the Zitterbewegung is a more general phenomenon, one can
surely learn something about this curious effect by considering a concrete
physical example with neglect of spin. For this purpose a simple model is
obtained by considering a Friedmann–Robertson–Walker universe with the
energy-momentum density Tmn, (3.10b), being carried by a spinless wave
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field c(x), (3.3), respectively, by the intensity matrix ((x), (3.9). Since the
energy-momentum density Tmn of matter must contain the effects of the
Zitterbewegung, but also influences the background geometry according to
Einstein’s equations

Rmn 2
1
2

Rgmn 5 8p
L2

p

"c
Tmn (4.1)

(Lp is the Planck length), one can study the interplay between the scale
parameter 5 of the Robertson–Walker line element [23]

ds2 5 dQ2 2 52 dl2 (4.2)

and the Zitterbewegung. In other words, we expect that the “radius of the
universe” 5 5 5(Q) as a function of cosmic time Q will inherit some
trembling component from the Zitterbewegung of matter, and a study of
this trembling expansion of the universe will yield some insight into the
Zitter effect.

Fortunately, the RW symmetry of such a universe simplifies the computa-
tions considerably. According to the cosmological principle [23], the matter
distribution is taken to be homogeneous and isotropic, which forces the
energy-momentum density Tmn into the following simple form:

Tmn 5 Ubmbn 2 PBmn (4.3)

Here the energy density U 5 U(Q) and the pressure P 5 P(Q) are functions
of the cosmic time Q, but they do not vary over the time slices Q 5 const
[whose 3-dimensional line element has been denoted by dl in Eq. (4.2)]. The
Hubble flow vector has been denoted by bm

bm 7 ­mQ (4.4)

(bmbm 5 1 1)

and its orthogonal projector by Bmn (5 Bnm), i.e.,

Bmnbm 5 0 (4.5a)

BmnBn
l 5 Bml (4.5b)

Bm
m 5 3 (4.5c)

Consequently the pseudo-Riemannian metric gmn of the underlying RW space-
time is split up according to

gmn 5 bmbn 1 Bmn (4.6)

and a similar result also for the Einstein tensor on the left of Eq. (4.1):
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Rmn 2
1
2

Rgmn 5 31H 2 2
s

522bmbn 2 1 s
52 2 3H 2 2 2Ḣ2Bmn (4.7)

As is well known, the RW symmetry can be realized by three different 4-
geometries, classified by the topological index s: closed universe (s 5 21),
flat universe (s 5 0), and open universe (s 5 11).

With these arrangements, the Einstein equations (4.1) are simplified to
the following two equations for the scale parameter 5 of the line element (4.2):

5̈ 5 24p
L2

p

"c
51P 1

1
3

U2 (4.8a)

H2 [ 15̇
52

2

5
s

52 1
8p
3

L2
p

"c
? U (4.8b)

The proper equation of motion for 5 is the first one, (4.8a), whereas the
second one [the Friedmann equation, (4.8b)] plays the part of a first integral
and therefore can serve as a constraint for the initial conditions. It should be
obvious that the special physics of the model enters the Einstein equations
(4.8) via the energy density U and pressure P and therefore we now have to
specify these quantities in terms of the concepts of RST.

In order to obey the cosmological principle in the form (4.3), we adopt
the Hamiltonian *m to be of the corresponding symmetric form

*m 5 * ? bm (4.9)

Indeed this assumption recasts the energy-momentum operator 7mn, (3.21),
into the required RW-symmetric form

7mn 5 8 ? bmbn 2 0 ? Bmn (4.10)

with the energy operator 8 and pressure operator 0 as

8 5
1

2Mc2 (* ? * 1 (}c2)2) (4.11a)

0 5
1

2Mc2 (* ? * 2 (}c2)2) (4.11b)

Consequently, the energy density U and pressure P to be inserted into the
Einstein equations (4.8) can be computed from this result by means of the
usual trace recipe [cf. (3.10b)]:

U 5 tr(( ? 8) (4.12a)

P 5 tr(( ? 0) (4.12b)
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From this it should become clear that different realizations of RST will lead
to different results for U, (4.12a), and P, (4.12b), and therefore will imply a
different expansion behavior 5(Q) of the universe according to the Einstein
equations (4.8). In particular, concerning the interplay of the Zitterbewegung
of matter and the collapse of the universe, the Einsteinian expansion dynamics
reacts very sensitively and can therefore be taken as a probe to feel the
trembling effect. In this respect, we shall now study two different realizations
of RST.

5. COMPLEX ONE-DIMENSIONAL REALIZATION

The simplest situation is encountered when the wave function c is an
ordinary complex number, i.e., when c(x) is a section of a complex line
bundle (with typical fiber C1). This case is equivalent to the ordinary Klein–
Gordon theory and has already been studied in two previous papers [8, 15].
It is therefore sufficient here to present the results only insofar as they are
relevant for the question of Zitterbewegung. In fact we shall readily show
that the Zitterbewegung of the ordinary Klein–Gordon theory actually is not
sufficient to prevent the universe from collapsing (as was the case for the
Dirac theory [20]).

5.1. C1-Realization of RST

Since only one complex dimension is available, the Hamiltonian is
simplified to an ordinary C1-valued 1-form and may therefore be split up
into its real and imaginary parts as [cf. (3.35)]

*m 5 "c(2iKm 1 Lm) (5.1)

Here the kinetic field Km and localization field Lm are ordinary (i.e., R1-
valued) 1-forms. Since the complex numbers do commute, all the commuta-
tors occuring in the equations of motion must necessarily vanish and, e.g.,
the curl relation (3.39) for the localization field +m simply reads now

¹mLn 2 ¹nLm 5 0 (5.2)

However, this says that Lm must be a gradient field, which therefore
gives rise to the introduction of some “amplitude field” L(x):

Lm 5
­mL

L
(5.3)

The significance of this amplitude field is readily eludicated by the observation
that the conservation equation for the kinetic field _m, (3.36), can be recast
into the following form:
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¹m(L2 ? Km) [ 0 (5.4)

Clearly this is nothing else than the 1-dimensional realization of the charge
conservation law (3.4), where of course the gauge-covariant derivative Dm

must be replaced by the coordinate-covariant derivative ¹m because of the
Abelian character of the gauge group U(1) to be applied here. Thus the single
(a 5 1) current density jm, (3.10a), is immediately read off from Eq. (5.4) as

jm , L2 ? Km (5.5)

(up to a constant prefactor). This result is also consistent with the definition
of the single (a 5 1) velocity operator vm, (3.20),

vm 5 2
1

2Mc2 (t ? *m 2 *m ? t) (5.6)

which yields

vm 5
"

Mc
Km (5.7)

due to the fact that the single generator (a 5 1) of the 1-dimensional gauge
group U(1) is t 5 2i. Furthermore, we conclude from the relativistic von
Neumann equation for the (1-dimensional) intensity matrix (,(3.9), that (
can be identified with the square of the amplitude field, i.e.,

( 5 L2 (5.8)

Thus the general definition for the current density jm, (3.10a), yields

jm 5
"

Mc
L2 ? Km (5.9)

in agreement with the preliminary guess (5.5).

5.2. Conventional Klein–Gordon Theory

The present C1-realization of RST is equivalent to the Klein–Gordon
theory. In ordinary Klein–Gordon theory, the current density jm is expressed
by means of the wave function c and its derivative $mc. Therefore, in order
to demonstrate the equivalence with the present form (5.9), we first have to
construct the C1-valued wave function c(x). This may be done simply by a
formal integration of the RSE (3.3), which reads for the present 1-dimen-
sional case

(­m 2 iAm)c 5 (2iKm 1 Lm)c (5.10)

Obviously, the formal solution here can be written in the form
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c(x) 5 L(x) ? exp12i #
x

(Km 2 Am) dx2 (5.11)

But for the sake of consistency we have to convince ourselves that the integral
actually is well defined for any endpoint x of space-time. This requirement
can be satisfied only if the vector integrand (Km 2 Am) is a gradient field
(­ma, say):

Km 2 Am 5 ­ma (5.12)

For this case, the wave function c(x) then adopts the well-known form

c(x) 5 L(x) ? e2ia(x) (5.13)

and obeys the Klein–Gordon equation (3.34),

$m$mc 1 1Mc
" 2

2

c 5 0 (5.14)

($mc 7 ­mc 2 iAmc)

However, the crucial gradient condition (5.12) does hold because the
integrability condition for the kinetic field (3.38) reads for the 1-dimen-
sional case

¹mKn 2 ¹nKm 5 Fmn (5.15)

Here we have used the decomposition (3.27) for the present 1-dimensional
situation as

^mn 5 Fmn ? t ⇒ 2iFmn (5.16)

(and similarly for !m). Clearly, the curl relation (5.15) does not yet allow
us to consider the kinetic field Km as a gradient field, but the field strength
Fmn has already been defined as the curl of a vector potential Am [cf. (3.8)]:

Fmn 5 ¹mAn 2 ¹nAm (5.17)

and therefore the combination of Eqs. (5.15) and (5.17) immediately leads
us to the desired gradient condition (5.12). Thus the complex 1-dimensional
realization of RST is actually equivalent to the ordinary Klein–Gordon theory!
As a consequence, all quantities of the conventional Klein–Gordon formalism
(usually expressed in terms of the wave function c and vector potential Am)
can be translated into the formalism of RST and thus can be expressed in
terms of the kinetic and localization fields. For instance, consider the current
density jm, (5.9). According to the formal isomorphism between (the present
realization of) RST and the conventional Klein–Gordon theory, it must be
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possible to reexpress jm in terms of the wave function c and its covariant
derivative $mc [specified in (5.14)]. Indeed, the desired alternative form for
the current jm is easily found as

jm 5
i"

2Mc
(c

*
? $mc 2 c ? $mc

*
) (5.18)

But this can immediately be transcribed to the RST form (5.9) by means of
the RSE (3.3) and the decomposition of the Hamiltonian *m, (5.1). Of course
the present result (5.18) is the conventional form for jm to be found in any
textbook dealing with the Klein–Gordon theory [e.g., 2, 3]. Observe also
that the physical densities (as the proper observable quantities in RST) must
be gauge-invariant. The gauge invariance of the RST current jm, (5.9), follows
immediately from the gauge invariance of the (1-dimensional) Hamiltonian
*m, (5.1), with respect to the (1-dimensional) U(1) transformations 6,

*8m 5 6 ? *m ? 621 [ *m (5.19)

(6(x) 5 exp(2ia(x)) P U(1))

Equivalently, the gauge invariance of the Klein–Gordon form for jm, (5.18),
follows from the fact that both the wave function c(x) and its covariant
derivative $mc transform homogeneously:

c8 7 6 ? c [ e2ia ? c 5 L ? e2i(a1a) 7 L ? e2ia8 (5.20a)

$8mc8 5 e2ia ? $mc (5.20b)

This implies that the phase a(x) of the general wave function c, (5.13), is
changed additively by the gauge parameter a, (5.19), i.e.,

a(x) ⇒ a8(x) 5 a(x) 1 a(x) (5.21)

It is well known that it is just this inhomogeneous transformation rule (5.21)
which combines with the corresponding inhomogeneous law for the connec-
tion !m,

!8m 5 6 ? !m ? 621 1 6 ? ­m621 (5.22)

i.e., for the present case

A8m 5 Am 2 ­ma (5.23)

in order to produce the homogeneous rule for the covariant derivative
$mc, (5.20b).

5.3. Zitterbewegung

With all these results in mind, we are now well prepared to clarify the
question of Zitterbewegung. If this effect should really exist in the Klein–
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Gordon theory, one would expect that there is some variable of oscillatory
character which carries the information about the Zitterbewegung. Clearly
the phase factor e2ia suggests itself as such a “trembling variable.” However,
as the preceding discussion of the current density jm(x) demonstrates, the
phase a(x) does not enter the physical densities and therefore we now have
to compute the energy density U, (4.12a), and pressure P, (4.12b), of matter
in order to insert this into the Einstein equations (4.8) for probing the reaction
of the scale parameter 5 with respect to the presence or absence of Zitter
components.

According to the cosmological principle, the general Hamiltonian *m

of the ordinary Klein–Gordon theory, (5.1), must reduce to the homogeneous
and isotropic form (4.9) with the scalar * being given by

* 5 "c(2iK 1 L) (5.24)

provided we put for the kinetic field _m and localization field +m

Km 5 K ? bm (5.25a)

Lm 5 L ? bm (5.25b)

[L [ L̇/L; cf. (5.3)]

Furthermore, in view of the fact that for the 1-dimensional case the intensity
matrix ((x) coincides with the square of the amplitude field L(x) [cf. (5.8)],
the energy density U, (4.12a), becomes

U ⇒ UKG 5
"2

2M FK 2 1 L2 1 1Mc
" 2

2G ? L2 (5.26)

and similarly we get for the pressure P, (4.12b),

P ⇒ PKG 5
"2

2M 1K 2 1 L2 2 1Mc
" 2

2

2? L2 (5.27)

This can now be substituted into the Einstein equations (4.8), but before
we can integrate this Einsteinian system, we have to supplement it by the
corresponding equations of motion for the kinetic field K and localization
field L. Here, the integrability conditions (3.38) and (3.39) for _m and +m

are trivially satisfied (observe ^mn [ 0) on account of the cosmological
principle (5.25) plus the Abelian character of the 1-dimensional case. Thus,
we are left with the conservation equations (5.4) for Km and (3.37) for Lm.

First consider the charge conservation law (5.4) with the current density
jm being given in its final form by Eq. (5.9). Due to the cosmological principle,
this current density must be of the form
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jm 5 I ? bm (5.28)

1I 7
"

Mc
L2 ? K2

Furthermore, the charge conservation

,mjm [ 0 (5.29)

as the 1-dimensional specialization of the general case (3.4), says that for
the scalar factor I, (5.28),

İ 1 3HI 5 0 (5.30)

But remembering the definition of the Hubble expansion rate H in terms of
the scale parameter 5, (4.8b), we can immediately integrate this to yield

I [
"

Mc
? L2 ? K 5

"

Mc
I*

53 (5.31)

(I* 5 const)

Finally, consider the general equation of motion for the localization field
+m, (3.37). Since, for the ordinary Klein–Gordon theory (5.1), the localization
field turned out to be a gradient field (5.3), the equation of motion for +m,
(3.37), effectively is a wave equation for the amplitude field L(x):

▫L 1 11Mc
" 2

2

2 KmKm2 ? L 5 0 (5.32)

(▫ 7 ¹m ¹m)

For the present homogeneous and isotropic case, where the amplitude field
L(x) exclusively depends upon the cosmic time Q [V L 5 L(Q)], this wave
equation simplifies to

L̈ 1 3HL̇ 1 F1Mc
" 2

2

2 K 2G ? L 5 0 (5.33)

Thus the Einstein–Klein–Gordon system is complete and its solutions exhibit
the following features.

In a closed RW universe (s 5 21), there exist solutions for the Ein-
steinian system (4.8), but the corresponding radius 5, energy density UKG,
(5.26), and pressure PKG, (5.27), are very insensitive with respect to the
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Zitterbewegung (Figs. 1 and 2). The initial conditions are chosen in such a
way that initially (5 * 0) one has the equation of state P ' 2U ' 21–2 Mc2L2,
which implies inflationary expansion [5̈ . 0; see Eq. (4.8a)]. But this
equation of state cannot persist beyond the initial phase and the universe must
ultimately contract to a point in a highly singular behavior (P ' U ⇒ 1`).

Though being present very weakly in the external quantities U and P,
there occurs nevertheless a violent Zitterbewegung for the amplitude field L
(Fig. 3) and kinetic field K (Fig. 4). The origin of this kind of trembling
behavior is best be seen by truncating the amplitude equation (5.33) to

L̈ 1 1Mc
" 2

2

? L 5 0 (5.34)

which would admit harmonic oscillations of frequency !Mc/". However,
such oscillations would imply also the existence of zeros for L, which is
forbidden by the conservation law (5.31). As a compromise, the amplitude
field adopts minimal values (in place of the forbidden zeros; cf. Fig. 3), and

Fig. 1. Inflation and collapse of the closed universe (s 5 21). The initial inflation phase
(5̈ . 0) is due to a special choice of the initial conditions leading to the equation of state P '
2U, which, however, is dynamically converted to P ' 1U for the collapse phase (5 → 0, 5̈
→ 2`). The Zitterbewegung causes only small oscillations of the universe’s radius 5. All
lengths (5, Q, . . .) are measured in units of the Compton length "/Mc).
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Fig. 2. Equation of state. Apart from small oscillations due to the Zitterbewegung, the pressure
P becomes zero for a large part of the universe’s lifetime. According to the work-energy
theorem d(U ? 53) 5 2P d(53), being implied by the Einsteinian system (4.8), the energy
density varies as U , 523 for the intermediate phase with vanishing pressure (P , 0). The
pressure P and energy density U become infinite at the collapse point.

in order to simultaneously obey the conservation law (5.31) the kinetic field
K must adopt pulsating behavior at these “almost-zeros” of L (cf. Fig. 4).

6. REAL, TWO-DIMENSIONAL REALIZATION

Any complex number, such as, e.g., the wave function c(x) of the
conventional Klein–Gordon theory (5.11), can be considered as a pair of real
numbers, w1 and w2, say:

c(x) 5 w1(x) 1 iw2 (x) (6.1)

Thus it may seem that one cannot gain anything new when we take now as
the typical fiber for our vector bundle (of wave functions) the 2-dimensional
real space R2 in place of the complex 1-dimensional space C1 which is
applied for the conventional Klein–Gordon theory. However, such a supposi-
tion misses the point for the following reason: in RST the relevant objects
are not the wave functions c(x) (as the sections of the appropriate vector
bundles), but the relevant objects are here the operators (operator-valued
sections) acting over the corresponding vector fibers. Whereas an operator
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Fig. 3. Zitterbewegung of amplitude field. The amplitude field L(Q) cannot perform full
oscillations (including negative values) because the conservation law (5.31) forbids the occur-
rence of zeros for L.

acting over C1 is also a complex number and therefore has only two field
degrees of freedom [cf. the Hamiltonian *m, (5.1)], the operators acting over
the fiber space R2 have in general two 3 two 5 four independent matrix
elements and therefore the present R2-realization of RST must be expected
to be equipped with a much richer structure than the ordinary Klein–Gordon
theory! In particular, one can describe here the properties of matter by means
of an intensity matrix (, in place of the poorer case of a wave function c
as in the Klein–Gordon theory. As we shall readily see, this additional
structure makes the Zitterbewegung more intricate.

6.1. Physical Densities

In contrast to the poor case of a (1 3 1) matrix for ( in Klein–Gordon
theory (5.8), the (symmetric) intensity matrix ( (5 () is now in general a
linear combination of three symmetric basis operators. For a convenient
choice of this operator basis we may take two orthogonal projectors 3+

(5 32
1 5 3+) and 32 (5 32

2 5 32):

3+ ? 32 5 0 (6.2a)

3+ 1 32 5 1 (6.2b)
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Fig. 4. Pulsations of the kinetic field. The conservation law (5.31) forces the kinetic field to
perform very short pulses at the “almost zeros” of the amplitude field L. Observe the regularity
of the pulses over a wide range of the universe’s size 5. The kinetic field K becomes infinite
at the collapse point.

These projectors tentatively might be associated to the particle and antiparticle
states. The third symmetric operator is the permutator P . All symmetric
matrices can now be expanded with respect to this 3-dimensional basis {3+,
32, P}, e.g., the intensity matrix (:

( 5 r+ ? 3+ 1 r2 ? 32 1 s ? P (6.3)

A fourth independent operator exists (t, say) which is antisymmetric (t 5
2t) and therefore can be taken as the generator for the gauge group SO(2),
which is isomorphic to the Klein–Gordon counterpart U(1) of the preceding
section. Thus the gauge potential !m, (3.17), is simplified to

!m 5 Am ? t (6.4)

and analogously for its curvature ^mn, (3.27),

^mn 5 Fmn ? t (6.5)

As a special representation of the complete basis {3+, 32, P , t} we could
take the following:
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3+ 5 11 0
0 02; 32 5 10 0

0 12 (6.6)

P 5 10 1
1 02; t 5 1 0 1

21 02
The densities {r+, r2, s} can then be recovered from the intensity matrix (,
(6.3), in an obvious way,

r+ 5 tr(( ? 3+) (6.7a)

r2 5 tr(( ? 32) (6.7b)

2s 5 tr(( ? P) (6.7c)

As intuitive as the picture of this interplay between particle and antiparti-
cle states may be in relativistic quantum theory, it seems more adequate not
to think here in these categories, but rather in terms of the concepts of
“internal” and “external” motions of the relativistic particle. The reason for
this is immediately seen by inspection of the gauge transformations upon the
intensity matrix (:

(8 5 6 ? ( ? 621 (6.8)

(6 5 exp(a ? t) P SO(2))

where the gauge element 6 P SO(2) is of course the counterpart of the
corresponding U(1) element in the Klein–Gordon theory [cf. (5.19)]. The
change of gauge (6.8) transforms the densities {r+, r2, s} as follows:

r81 5 r+ ? cos2a 1 r2 ? sin2a 1 s ? sin 2a (6.9a)

r82 5 r2 ? cos2a 1 r+ ? sin2a 2 s ? sin 2a (6.9b)

s8 5 2
1
2

(r+ 2 r2) sin 2a 1 s ? cos 2a (6.9c)

As expected, the particle density r+ is mixed up here with the antiparticle
density r2 in such a way that their sum r 5 r+ 1 r2 as the trace of the
intensity matrix (, (6.3), remains invariant, i.e.,

r8 [ r 5 tr( (6.10)

This result compares now to the invariance of the intensity matrix (,
(5.8), in the preceding Klein–Gordon theory. Therefore, if we want to compare
the preceding C1-realization with the present R2-realization of RST, we should
collect the gauge-invariant densities into one subset (the “external” densities)
and the gauge dependent densities into another subset (the “internal” densities)
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so that the external objects become the direct analogues of the Klein–Gordon
objects and the internal objects become responsible for the differences of the
theories. But observe here that these differences refer to the fact that the R2-
realization is capable of dealing also with particle–antiparticle mixtures,
whereas the C1-realization can deal only with the superposition of particle
and antiparticle states. Thus we see that the C1-realization is embedded as a
special case into the more general R2-realization, namely in the form of the
subset of pure states. Consequently, neglect of the internal degrees of freedom
of the present R2-realization makes it identical to the preceding C1-realization
(i.e. Klein–Gordon theory). Superfluous to say that the internal motion will
further complicate the notorious Zitterbewegung.

According to this philosophy, we introduce the sum of densities r, (6.10),
and their difference q,

q 7 r+ 2 r2 (6.11)

in place of r+ and r2 and then find from (6.9) that the internal variables
form an SO(2) doublet:

q8 5 q ? cos 2a 1 2s ? sin 2a (6.12a)

2s8 5 2s ? cos 2a 2 q ? sin 2a (6.12b)

Correspondingly, an operator doublet {Q, P} is obtained by putting

Q 7 3+ 2 32 (6.13)

which then yields the following transformation formulas:

Q8 7 6 ? Q ? 621 5 Q ? cos 2a 2 P ? sin 2a (6.14a)

P8 7 6 ? P ? 621 5 P ? cos 2a 1 Q ? sin 2a (6.14b)

Consequently, the intensity matrix ( can now be decomposed into its gauge-
invariant and covariant constituents:

( 5
1
2

r ? 1 1
1
2

q ? Q 1 s ? P (6.15)

Of course, the gauge covariance must also apply to the corresponding covari-
ant derivatives, i.e., we must have, in analogy to the transformation behav-
ior (6.12),

D8mq8 5 Dmq ? cos 2a 1 Dm(2s) ? sin 2a (6.16a)

D8m(2s8) 5 Dm(2s) ? cos 2a 2 Dmq ? sin 2a (6.16b)

This is easily verified by means of the SO(2) covariant derivatives for the
densities, to be defined through
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Dmq 7 ­mq 1 4Am ? s (6.17a)

Dms 7 ­ms 2 Am ? q (6.17b)

Observe here also that the change of the gauge potential Am, (5.23), is the
same for both realizations on account of the isomorphism of both gauge
groups U(1) and SO(2).

But an important difference between the two realizations lies in the fact
that the C1-realization must always deal with a pure state c(x), whereas the
R2-realization can also deal with a mixture. Observe that a pure state can
always be considered as a special case of a mixture, namely when the intensity
matrix ( degenerates into the tensor product of the pure state c (i.e., ( ⇒
c ^ c). The necessary and sufficient condition for this to occur is the
following Fierz identity [10] for the intensity matrix (:

(2 5 r ? ( (6.18)

This condition reads in terms of the densities

r2 5 q2 1 (2s)2 (6.19)

which is consistent with the gauge invariance [cf. (6.10) and (6.12)].

6.2. Hamiltonian Dynamics

In RST, the motion of matter is governed by the relativistic von Neumann
equation (3.9), but before this equation can be converted to an equation of
motion for the densities, one must know the Hamiltonian *m as a solution
of its field equations, namely the conservation equation (3.24) and the integ-
rability condition (3.33). Therefore let us first decompose *m with respect
to the new operator basis {1, Q, P , t} and then determine the equations of
motion for the coefficients of that decomposition.

The kinetic field _m as the antisymmetric part of the Hamiltonian *m

has a very simple structure because we have here only one antisymmetric
basis operator (t), similarly as in the Klein–Gordon theory (5.1):

_m 5 Km ? t (6.20)

But the localization field has a rather nontrivial decomposition:

+m 5 Lm ? 1 1
1
2

lm ? Q 1 Nm ? P (6.21)

which degenerates to the Klein–Gordon case [+m 5 +m ? 1; see (5.1)] only
if the internal part is neglected! The general curl relations (3.39) again require
here the existence of an amplitude field L(x) just as in the Klein–Gordon
theory [cf. (5.3)]:
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Lm 5
­mL

L
(6.22)

where this amplitude field refers now to the external motion. The remaining
curl relations for the internal part of +m are easily deduced from the general
equation (3.39) as

Dmln 2 Dnlm 5 4(KmNn 2 KnNm) (6.23a)

DmNn 2 DnNm 5 lmKn 2 lnKm (6.23b)

Clearly, since both internal vector fields lm and Nm are SO(2) gauge objects,

l8m 5 lm ? cos 2a 1 (2Nm) ? sin 2a (6.24a)

2N 8m 5 2Nm ? cos 2a 2 lm ? sin 2a (6.24b)

(and similarly for the covariant derivatives), one must always apply their
SO(2) covariant derivatives (D), i.e.,

Dmln 7 ¹mln 1 4Am ? Nn (6.25a)

DmNn 7 ¹mNn 2 Am ? ln (6.25b)

The analogous curl relation (3.38) for the kinetic field _m, (6.20), must of
course be very simple again and is found to be

¹mKn 2 ¹nKm 5 Fmn 1 lmNn 2 lnNm (6.26)

This differs from its Klein–Gordon counterpart, (5.15), by the wedge product
of the internal vectors lm and Nn which is added to the electromagnetic field
Fmn on the right-hand side.

Next, consider the conservation equation for _m, (3.36). Since the anti-
commutators of the Hermitian operators Q and P and of the anti-Hermitian
operator t vanish, it is only the gradient part Lm, (6.22), of the localization
field +m, (6.21), which becomes active and thus Eq. (3.36) directly leads to
the following conservation law:

¹m (1)jm [ 0 (6.27a)

(1)jm 5
"

Mc
L2 ? Km (6.27b)

This is exactly the same conserved current as was found for the Klein–Gordon
theory; cf. (5.9). However, in addition to the conserved current (6.27), existing
also in the C1-realization, we have here a second conserved current in the
R2-realization, namely the one given by the original definition (3.10a). In
order to see that this latter current is really different from the former (1)jm,
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(6.27b), we explicitly compute the velocity operator vm, (5.6), by means
of the Hamiltonian *m as given by Eqs. (6.20) plus (6.21) and then find
from (3.10a)

(2)jm 7 tr(( ? vm) 5
"

Mc
(r ? Km 1 s ? lm 2 q ? Nm) (6.28)

Evidently this current (2)jm reduces to the previous current (1)jm, (6.27b),
through neglect of the internal motion, where the density r can be identified
with the square of the amplitude field L2. Clearly it is suggestive to consider
the present current (2)jm as the counterpart of Dirac’s current (D)jm, (2.14)–
(2.15), which embraces both the convection part (C)jm, (2.20a), and the polar-
ization part (P)jm, (2.20b). Correspondingly, one feels strongly tempted here
to define the internal part (i)jm of the total current (2)jm through

(i)jm 5 (2)jm 2 (1)jm 5
"

Mc
((r 2 L2) ? Km 1 s ? lm 2 q ? Nm) (6.29)

Observe here that, though this current (i)jm is due to the internal motion and
therefore is composed of SO(2) gauge objects, it is actually gauge invariant
and obeys a separate conservation law

¹m (i)jm [ 0 (6.30)

[The gauge invariance of (i)jm immediately is implied by the gauge behavior
of the Hamiltonian coefficients lm, Nm, (6.24), and of the internal densities
s, q, (6.12).] The associated conserved “charge” z* arises by integration over
some 3-dimensional hypersurface (S):

z* 5 #
(S)

(i)jm ? dSm (6.31)

and can be taken as a global measure for the strength of excitation of the
internal motion (Klein–Gordon theory: z* 5 0). It is just because of this
conservation law (6.31) that any mixture with z* Þ 0 cannot evolve into a
pure state (which has z* 5 0). However, those mixtures with z* 5 0 (V
“quasi-pure states”) can well decay to a truly pure state; see below for the
discussion of the quantum jumps.

Finally, in order to close the Hamiltonian dynamics, we have to consider
also the conservation equation for the localization field +m, (3.37). Indeed,
this is a very important part of the whole dynamics because it is the RST
analogue of the energy eigenvalue equation of conventional quantum theory.
In order to see this in more detail, we write down the general equation (3.37)
in terms of the localization coefficients Lm, lm, Nm, (6.21), and find
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ML 1 11Mc
" 2

2

2 KmKm 1 NmNm 1
1
4

lmlm2 ? L 5 0 (6.32a)

Dm(L2 ? Nm) 50 (6.32b)

Dm(L2 ? lm) 50 (6.32c)

The comparison of the present amplitude equation (6.32a) to its Klein–Gordon
analogue (5.32) again demonstrates the presence of the internal motion in
the R2-realization but its absence in the C1-realization of RST. Let us remark
also that the conservation equations (6.32b) and (6.32c) receive the status
of conservation laws only for vanishing field strength (i.e., Fmn [ 0) because
in this case the potential Am can be gauged off (Am ⇒ 0) and consequently
the covariant derivative Dm can be replaced by ¹m. We shall make use of
this fact below when considering the Zitterbewegung over an FRW universe.

6.3. Density Dynamics

The results (4.11)–(4.12) for the energy density U and pressure P show
that these quantities will be composed of both Hamiltonian coefficients and
physical densities collected into the intensity matrix ( [i.e., Eq. (6.15) for
the R2-realization]. Therefore, in order to discuss the Zitterbewegung as it
emerges from the solutions to the Einsteinian system (4.8), it finally becomes
necessary to consider the dynamical equations for the physical densities. In
compact form, the desired density dynamics has already been written down
as the relativistic von Neumann equation (3.9), so that we merely have to
specify this equation for the physical densities emerging in the decomposition
of (, (6.15). This procedure yields for the external density r, (6.10), as the
gauge-invariant part of (

­mr 5 2r ? Lm 1 q ? lm 1 4s ? Nm (6.33)

Observe again that the derivative of the invariant r contains a contribution
of the internal motion (the last two terms), albeit in a gauge-invariant combina-
tion. Similarly, the field equations for the internal densities q and s are found
from Eq. (3.9) as

Dmq 5 4s ? Km 1 r ? lm 1 2q ? Lm (6.34a)

Dms 5 2q ? Km 1 r ? Nm 1 2s ? Lm (6.34b)

(Hint: A quick check of this result consists in its correct gauge covariance.)
Now, there is an interesting point with the present density dynamics

which has been already observed in connection with the 2-particle systems
[16], namely the link between the amplitude field L(x) and the physical
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densities. It has already been remarked during the discussion of the current
(2)jm, (6.28), that for the Klein–Gordon theory one must identify L2 and r.
But this identification must obviously be generalized for the present R2-
realization of RST. Indeed, it is suggestive to connect the physical densities
with the amplitude field L(x) via some “renormalization factor” Z, i.e., we put

r 5 ZI ? L2 (6.35a)

q 5 ZD ? L2 (6.35b)

s 5 ZP ? L2 (6.35c)

Since the amplitude field L(x) is an SO(2) gauge invariant, the renormalization
factors inherit their transformation behavior from the corresponding physical
densities, i.e.,

Z8I [ ZI (6.36a)

Z8D 5 ZD ? cos 2a 1 2ZP ? sin 2a (6.36b)

2Z8P 5 2ZP ? cos 2a 2 ZD ? sin 2a (6.36c)

Furthermore, the field equations for the physical densities (6.33)–(6.34) are
converted to the corresponding equations for the renormalization factors

­mZI 5 ZD ? lm 1 4ZP ? Nm (6.37a)

DmZD 5 4ZP ? Km 1 ZI ? lm (6.37b)

DmZP 5 2ZD ? Km 1 ZI ? Nm (6.37c)

where the covariant derivatives have to be defined in an appropriate way
[cf. (6.17)]:

DmZD 7 ­mZD 1 4Am ? ZP (6.38a)

DmZP 7 ­mZP 2 Am ? ZD (6.38b)

The interesting point with the renormalization factors is that they give
rise to the introduction of the desired trembling variable describing the Zitter
degree of freedom. This is readily recognized by a closer inspection of the
Fierz deviation DF [24],

DF 7 (tr ()2 2 tr((2) 5 1–2 (r2 2 q2 2 (2s)2) (6.39)

which vanishes for the pure states; see the discussion of the Fierz identity
(6.18). One can easily show by means of the density dynamics (6.33)–(6.34)
that the Fierz deviation DF obeys the field equation
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­mDF 5 4DF ? Lm (6.40)

and therefore can be expressed in terms of the amplitude field L(x) as

DF(x) 5 DF,in ? 1L(x)
Lin

2
4

(6.41)

(Df,in, Lin . 5 const)

If this result is resubstituted into Eq. (6.39) with the simultaneous elimination
of the physical densities in favor of the renormalization factors, we get the
following constraint:

ZI
2 2 ZD

2 2 (2ZP)2 5 const (6.42)

Here it is obvious that there are three essentially different cases according
to whether the constant on the right of (6.42) is positive, zero, or negative.
Without loss of generality we can put

ZI
2 2 ZD

2 2 (2ZP)2 5 s* (6.43)

where the constant s* adopts the values 0, 61 and therefore plays a part
quite analogous to the topological index s for the Einsteinian system (4.8).
Introducing the gauge invariant ZII through

ZII 5 !ZD
2 1 (2ZP)2 (6.44)

we have from (6.43)

ZI
2 2 ZII

2 5 s* (6.45)

and therefore we can parametrize the positive mixtures (s* 5 11) by means
of an internal variable z

ZI 5 6 cosh z (6.45a)

ZII 5 sinh z (6.45b)

the negative mixtures (s* 5 21) by

ZI 5 sinh z (6.46a)

ZII 5 6 cosh z (6.46b)

and finally the pure states (s* 5 0) by

ZI 5 ZII 5 ez (6.47)

Furthermore, for any one of the three situations we can introduce an
angular variable h through
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ZD 5 ZII ? cos h (6.48a)

2ZP 5 ZII ? sin h (6.48b)

and this object h(x) must then change under the SO(2) gauge transformations
(6.8) according to

h ⇒ h8 5 h 2 2a (6.49)

in order that the renormalization factors ZD and ZP , (6.48), obey the former
transformation law (6.36). Thus the pure states (s* 5 0) are seen to sweep
out the “Fierz cone” in density configuration space, whereas the positive
mixtures (s* 5 11) occupy the two-part hyperboloid within the Fierz cone
and the negative mixtures (s* 5 21) are characterized by the unparted
hyperboloid outside the Fierz cone (Fig. 5).

Once the internal variable z and the angular variable h have been
introduced, one would like to see also their equations of motion [to be deduced
from the renormalization dynamics (6.37)]. To this end, it is very convenient
to combine first the localization coefficients lm and Nm, (6.21), into two gauge-
invariant combinations gm and hm:

gm 5 sin h ? lm 2 cos h ? (2Nm) (6.50a)

hm 5 cos h ? lm 1 sin h ? (2Nm) (6.50b)

and then the field equations for z and h read for all three cases (s* 5 0, 61)

­mz 5 hm (6.51a)

hm 5 221Km 1
ZI

2ZII
gm2 (6.51b)

The remarkable point here is again the question of gauge covariance: since
the angular variable h is itself not a gauge invariant [cf. (6.49)] its partial
derivative (­mh) must first be combined with the gauge potential Am into a
gauge-invariant object hm,

hm 7 ­mh 2 2Am (6.52)

before it can enter the invariant field equation (6.51b)!
Finally, it is also instructive to convince oneself of the internal character

of the variable z. For this purpose, rewrite the internal current (i)jm, (6.29),
in terms of the newly introduced objects and find, e.g., for the positive mixture
(s* 5 11)

(i)jm 5
"

Mc 1Km ? (cosh z 2 1) 1
1
2

gm ? sinh z2 ? L2 (6.53)

Thus, the internal current must vanish when the internal variable z approaches
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Fig. 5. Mixtures and pure states The relativistic von Neumann equation (3.9) divides the
densitiy configuration space into three dynamically disconnected subsets: mixtures of positive
and negative type and pure states which sweep out the Fierz cone (s* 5 0). The positive
mixtures approach a pure state for z → 0 (A) and z → ` (B), whereas the negative mixtures
can approach the pure states only for z → ` (C). A “quantum jump” is a sudden transition
from a pure state (A) to another pure state (B) where the intermediate configurations are quasi-
pure states, i.e., a special subset of the positive mixtures.

its trivial value (z → 0). As a consequence, both currents (1)jm, (6.27b), and (2)jm,
(6.28), become identical, which signals that the internal degree of freedom
has disappeared from the dynamics and we are left with the conventional
Klein–Gordon theory, [cf. the Klein–Gordon current jm, (5.9)]. This situation
suggests we introduce a new type of field configuration: the “quasi-pure
state.” Here the conserved internal charge z*, (6.31), does vanish, i.e., z* 5
0, but the corresponding internal current (i)jm, (6.53), may (or may not) be
different from zero. Obviously this is a slight generalization of the situation
where the internal current (i)jm, (6.53), itself vanishes [i.e., z(x) [ 0]; equiva-
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lently, where the RST current (2)jm, (6.28), coincides with its Klein–Gordon
counterpart (1)jm, (6.27b). For later purposes, we remark that the pure states
can be approached not only for z → 0, but also for z → `.

6.4. Hamiltonian Dynamics Revisited

As the preceding arguments have shown, the density dynamics could
be most conveniently expressed in terms of the newly introduced vector fields
gm and hm [cf. (6.50)]. However, in order to have a closed dynamical system,
we should now also express the former Hamiltonian dynamics in terms of
those vectors gm and hm. But apart from this formal viewpoint, the use of gm

and hm (in place of Nm and lm) will provide us with further insight into the RST.
First, observe that the amplitude equation (6.32a) reads in terms of the

new vectors gm and hm as follows:

ML 1 H1Mc
" 2

2

2 KmKm 1
gmgm 1 hmhm

4 J ? L 5 0 (6.54)

Clearly, one is tempted to consider this equation as the immediate generaliza-
tion of the Klein–Gordon case (5.32) where the vectors gm and hm describe
here the additional internal degree of freedom which is missing in the Klein–
Gordon theory. However, things are not so simple and the reason for this is
that the present kinetic field Km does not have the field strength Fmn as its
curl [cf. (6.26)], which, however, is the case for the Klein–Gordon analogue
(5.15). Therefore, before we can safely estimate the effects of the internal
motion inherent in the R2-realization, we first have to understand better the
role played by the kinetic field Km within both realizations of RST. This
insight can be attained by a closer inspection of the curl relations for the
new vectors gm and hm.

A modified kinetic field 8Km which has the field strength Fmn as its curl

¹m8Kn 2 ¹n8Km 5 Fmn (6.55)

is readily available by simply observing the fact that the gauge-invariant
object hm, (6.52), has the desired field strength Fmn as its curl, i.e.,

¹mhn 2 ¹nhm 5 22Fmn (6.56)

Therefore, remembering the former relationship (6.51b) between Km and hm,
we immediately find the desired field 8Km, (6.55), as

8Km [ 2
1
2

hm 5 Km 1
ZI

2ZII
gm (6.57)

This conclusion says that both kinetic fields Km and 8Km differ by some vector
field Gm (“exchange vector field”; see ref. 16)
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8Km 5 Km 2 Gm (6.58)

the curl of which is found from a combination of both curl relations (6.26)
and (6.55) as

¹mGn 2 ¹nGm 5 lmNn 2 lnNm

[
1
2

(gmhn 2 gnhm) 7 Gmn (6.59)

The “exchange field strength” Gmn introduced in this way is gauge invariant as
is the exchange vector Gm, which is read off directly from Eq. (6.57)–(6.58) as

Gm 5 2
1
2

ZI

ZII
gm (6.60)

Perhaps this result (6.60) for Gm may appear to have been obtained by
a somewhat indirect approach, but its consistency check is a nice exercise:

(i) Compute the left-hand side of Eq. (6.59) by reference to the solution
for Gm, (6.60).

(ii) Thereby observe the derivatives of the renormalization factors ZI ,
ZII [to be in agreement with their constraint (6.45)]

­mZI 5 ZII ? hm (6.61a)

­mZII 5 ZI ? hm (6.61b)

(iii) Furthermore, use the curl relations for gm and hm [to be deduced
from the former curl relations for lm and Nm, (6.23)]

¹mgn 2 ¹ngm 5
ZI

ZII
(hmgn 2 hngm) (6.62a)

¹mhn 2 ¹nhm 5 0 (6.62b)

and then find the result identical to the right-hand side of Eq. (6.59).

After having thus gained some confidence in the new form of the
Hamiltonian dynamics, one can trace back the new vectors gm and hm, (6.50),
to certain scalar fields (z and x, say). Of course the curl relation (6.62b)
immediately identifies the vector hm as a gradient field, but this was already
known through (6.51a). What is new is that the curl relation for gm, (6.62a),
gives rise to a scalar field (x, say) because the general solution of (6.62a)
for gm is given by

gm 5 ZII ? ­mx (6.63)

Both scalar fields z and x will be of considerable help for discussing the
effects of the internal motion upon the Zitterbewegung in the next section.
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To conclude the Hamiltonian dynamics in its new form, let us mention
also the source equations for the new vectors gm and hm, to be deduced from
the analogous source equations (6.32b)–(6.32c) for the old vectors lm, and Nm:

¹m(L2gm) 5 22L2 ? (8Km ? hm) (6.64a)

¹m(L2hm) 5 2L2 ? (8Km ? gm) (6.64b)

Since both gm and hm can now be traced back to the scalars x and z, the
system (6.64) is effectively a coupled second-order system for those scalar
fields. Let us mention also that the source equations (6.64) are needed when
one wants to verify the general conservation law (3.4) for the RST current
(2)jm, (6.28), which reads in terms of the new variables

(2)jm 5
"

Mc HZI ? Km 1
1
2

ZII ? gmJ ? L2 (6.65)

e.g., for the positive mixtures (6.45)

(2)jm ⇒ "

Mc Hcosh z ? Km 1
1
2

sinh z ? gmJ ? L2 (6.66)

Observe here again the striking similarity with the Dirac currrent (D)jm, (2.15),
which yields the motivation to introduce the internal current (i)jm, (6.53), as
the RST counterpart of the polarization current (P)jm, (2.20b).

The vanishing of the internal current (i)jm for z → 0 is accompanied by
a similar effect for the new amplitude equation (6.54), which reads in terms
of the scalar fields x and z

ML 1 H1Mc
" 2

2

2 KmKm 1
Z 2

II­
mx ? ­mx 1 ­mz ? ­mz

4 J ? L 5 0 (6.67)

Indeed for the positive mixtures (6.45), i.e., ZII ⇒ sinh z, we recover again
the Klein–Gordon case (5.32) in the limit z → 0. But why do we not regain
the Klein–Gordon situation for the negative mixtures in the limit z → 0
when the internal motion is thought to come to rest?

6.5. Approaching the Pure States

The fact that, up to now, we can approach the pure states only from the
region of positive mixtures (z → 0), but not from that of negative mixtures
(see Fig. 5), brings us to consider more thoroughly the pure-state limit. In
view of the pseudo-Euclidian geometry of the density configuration space,
one is strongly reminded of the analogous situation in special relativity where
the world line of some point particle, if accelerated up to the speed of light,
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approaches more and more the light cone. Analogously we would suppose
for our present situation that the pure states, being represented by the Fierz
cone in density configuration space, should be approached by mixtures of
both kinds for z → ` (not only for z → 0, as considered up to now for the
positive mixtures). Indeed, a simple geometric argument demonstrates that
both types of hyperboloids approach the Fierz cone for z → ` (see Fig.
5). We are going now to recast this intuitive geometric idea into rigorous
analytical results.

In order to make manifest the Klein–Gordon theory as the limiting case
(z → `) for both mixtures, we first introduce a modified localization field
8Lm, quite analogously to the case of the kinetic field 8Km, (6.57):

8Lm 7 Lm 1
1
2

ZI

ZII
hm [

­m8L

8L
(6.68)

Clearly such a construction gives rise to the emergence of a modified ampli-
tude field 8L(x),

8L(x) 7 !ZII ? L(x) (6.69)

The use of these modified fields puts now the results for the mixtures in a
form which is closely related to the Klein–Gordon results and thus elucidates
their limiting character.

First, consider the RST current (2)jm, (6.65), which reads now in terms
of the modified fields

(2)jm 5
"

Mc
? HZI

ZII
? 8Km 2

1
2

s*

Z2
II

? gmJ? 8L2 (6.70)

(¹m(2)jm 5 0)

For the pure states (6.47), where s* 5 0, this current is simplified to

(2)jm ⇒ "

Mc
8Km 8L2 (6.71)

which is just the Klein–Gordon result (5.9) via the identifications

RST H8Km ⇔ Km

8Lm ⇔ Lm
J KGT (6.72)

However, the point here is that the Klein–Gordon result (6.71) arises also
for both mixtures (s* 5 61) in the limit case z → `, which accurately meets
with our expectations mentioned above.

For the amplitude equation, the situation is not quite so clear. Reformulat-
ing Eq. (6.67) in terms of the modified fields yields
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M8L 1 H1Mc
" 2

2

2 8Km ? 8Km

2
1
4

s*F(­mx)(­mx) 2 1 1
ZII
2

2

(­mz)(­mz)GJ ? 8L 5 0 (6.73)

Of course, for the pure states (s* 5 0) we again arrive at the Klein–Gordon
amplitude equation (5.32) via the former identifications (6.72). But for the
mixtures (s* 5 61) we need an extra argument for the limiting case (z →
`), which we will supply below when discussing the Zitterbewegung. For
that purpose we shall also need the modified forms of the source equations
(6.64), which are rewritten as

¹m18L2 ? ­mz

ZII
2 5 2 8L2 ? (8Km ? ­mx) (6.74a)

¹m (8L2 ? ­mx) 5 22
8L2

ZII
? (8Km ? ­mz) (6.74b)

Finally, the discussion of Zitterbewegung will also require the specifica-
tion of the energy-momentum density Tmn, (3.10b). Following that constructive
receipe for Tmn with the energy-momentum operator 7mn being given by
(3.21) yields Tmn as a sum of three contributions:

Tmn 5
ZI

ZII
? (KG)Tmn 1 (m)Tmn 1 (i)Tmn (6.75)

Here the first part (KG)Tmn coincides with the Klein–Gordon result (albeit
expressed in terms of the modified fields)

(KG)Tmn 5
"2

M H8Km 8Kn 1 8Lm 8Ln 2
1
2

gmn

? 18Kl 8Kl 1 8Ll 8Ll 2 1Mc
" 2

2

2J ? 8L2 (6.76)

Clearly this part (KG)Tmn, surviving the limit z → `, is due to the external
motion and therefore is present already in the Klein–Gordon theory as a
point-particle theory. But in addition to this now we have also an internal
energy-momentum (i)Tmn,

(i)Tmn 5 s* ?
"2

4M
?

ZI

Z 3
II

? 8L2 ? imn (6.77a)

with the internal tensor imn being given by
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imn 5 gmgn 1 hmhn 2
1
2

gmn(glgl 1 hlhl) (6.77b)

This internal part (i)Tmn is completely missing for the pure states (s* 5 0),
but it does not vanish formally for z → `. Therefore this part requires a
seperate discussion. The last term (m)Tmn is a mixed term and therefore
describes the interaction between the external and internal motion:

(m)Tmn 5 2s* ?
"2

2M
8L2

ZII
2 ? mmn (6.78a)

with the mixed tensor mmn being specified as

mmn 5 gm ? 8Kn 1 gn ? 8Km 1 hm ? 8Ln 1 hn ? 8Lm

2 gmn(gl ? 8Kl 1 hl ? 8Ll) (6.78b)

It is easy to see that this mixed part (m)Tmn actually vanishes not only exactly
for the pure states (s* 5 0), but also for the limiting case z → ` for both
kinds of mixtures (s* 5 61).

7. OSCILLATIONS AND JUMPS

With the preceding preparations we arrive now at the right point of
departure for studying the internal Zitterbewegung. Remember that for the
R2-realization the complete dynamical system consists of the equations of
motion for the external variables 8Km and 8L and for the internal variables
z and x. Concerning the external variables, the dynamical system for the
kinetic field 8Km consists of the source equation (6.27) and the curl equation
(6.55), whereas the amplitude field 8L(x) has to obey the wave equation
(6.73). For the internal variables z and x we have found the equations of
motion (6.74). Since obviously both subsets of the dynamical equations are
coupled to each other, one expects a distinct influence of the Zitterbewegung
upon the external motion and this in turn must leave its imprint upon the
space-time geometry via the Einstein equations (4.8). Here, the cosmological
principle again simplifies the situation considerably and we shall now first
reduce the general equations of motion due to the Robertson–Walker
symmetry.

7.1. Internal Dynamics

The RW symmetry makes both the scalars z and x depend exclusively
upon the cosmic time Q and this simplifies the corresponding dynamical
system (6.74) into the following form:
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d
dQ 153 8L2 ż

ZII
2 5 28K ? (53 8L2 ẋ) (7.1a)

d
dQ

(53 8L2 ẋ) 5 228K ? 153 8L2 ż
ZII

2 (7.1b)

Clearly such a result suggests we resort to a reparametrization by introducing
an angular variable X of the following kind:

53 8L2 ż
ZII

5 l* sin X (7.2a)

53 8L2 ẋ 5 l* cos X (7.2b)

(l* 5 const)

The equation of motion for the new variable X is then readily deduced from
the preceding system (7.1) as

Ẋ 5 2 8K (7.3)

As an application of this reparametrization arrangement one can consider the
amplitude equation (6.73), which now reappears in its RW-symmetric form as

8L̈ 1 3H 8L̇ 1 H1Mc
" 2

2

2 8K 2 2
1
4

s* l2

*
?

cos 2X
56 8L4J ? 8L 5 0 (7.4)

Observe here that for the pure states (s* 5 0) we are actually led back
again to the Klein–Gordon case (5.33); cf. the identifications (6.72). But
additionally the Klein–Gordon form of the amplitude equation also applies
to the mixtures (s* Þ 0), namely when the universe’s size becomes very
large (5 → `) or when the new variable 2X approaches p/2(mod p) for the
pure-state limit z → `.

7.2. Equation of State

Next, consider the Einsteinian system (4.8), which as it stands is not
yet complete, but requires the specification of an equation of state. Such a
link between the pressure P and energy density U is supplied here by speci-
fying these quantities in terms of the external and internal variables. The
former result (6.75) for the energy-momentum density Tmn says that U and
P should be composed of three constituents:

U 5
ZI

ZII
? UKG 1 Um 1 Ui (7.5a)

P 5
ZI

ZII
? PKG 1 Pm 1 Pi (7.5b)
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Of course, the Klein–Gordon part is here the same as previously, (5.26)–
(5.27), apart from the transcription (6.72) of the corresponding fields:

UKG 5
"2

2M H8K2 1 8L2 1 1Mc
" 2

2J ? 8L2 (7.6a)

PKG 5
"2

2M H8K2 1 8L2 2 1Mc
" 2

2J ? 8L2 (7.6b)

Similarly, for the mixed contribution we have now

Um 5 Pm 5 2s*l*
"

2M
?

8K cos X 1 8L sin X
ZII53 (7.7)

and finally for the internal part

Ui 5 Pi 5 s*l*
2 "2

8M
ZI

ZII

1
56 ? 8L2 (7.8)

The dynamical system would now be complete if one could specify also
the equation of motion for the kinetic field 8K. However this variable will
be treated in a somewhat different way, namely by reference to the conserva-
tion laws.

7.3. Conservation Laws

The discussion of Zitterbewegung for the Klein–Gordon theory has
been facilitated considerably by means of the conservation law (5.31). This
provided us with the understanding of the dynamical behavior of the kinetic
field K. In a similar way, both conservation laws (6.27) for (1)jm and (6.70)
for (2)jm will play an important part in the present discussion of the RST
Zitterbewegung. We shall benefit from the simultaneous existence of two
conservation laws.

In order to see how this works, let us first reformulate the first current
(1)jm, (6.27b), in terms of the modified fields:

(1)jm 5
"

Mc
8L2

ZII
? 18Km 2

ZI

2ZII
gm2 (7.9)

By virtue of the cosmological principle, this result is recast into the form

(1)jm ⇒ "

Mc
8L2

ZII
? 18K 2

ZI

2
ẋ2bm (7.10)

On the other hand, any current jm obeying simultaneously the cosmological
principle (5.28) and the conservation law ¹m jm 5 0, (5.29), must look like
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(1)jm 5
"

Mc

(1)I*

53 bm
(1)I* 5 const) (7.11)

Thus comparing both forms (7.10) and (7.11) for (1)jm yields the constraint

ZII ? (1)I* 5 53 8L218K 2
ZI

2
ẋ2 (7.12)

The same argument can be applied also to the RST current ((2)jm, (6.70), and
then yields an analogous constraint:

ZII ? (2)I* 5 53 8L21ZI 8K 2
1
2
s* ẋ2 (7.13)

Now combine Eqs. (7.12) and (7.13) to eliminate the external variables
8K and 8L and then find the following constraint for the internal variables z, X:

ZII ? cos X 5 i2 2 i1 ? ZI 1ia 7
2 ? (a)I*

l*
5 const, a 5 1, 22 (7.14)

Furthermore, differentiating this result with respect to cosmic time Q and
using the equations of motion for z, (7.2a), and for X, (7.3), yields the RST
counterpart of the Klein–Gordon conservation law (5.31):

53 8L2 8K 5
(2)I* ? ZI 2 s* ? (1)I*

ZII
(7.15)

Indeed, for the pure states (s* 5 0) we have ZI 5 ZII [cf. (6.47)] and the
present RST result (7.15) coincides exactly with the previous Klein–Gordon
case (5.31). But this is also recovered asymptotically for a mixture (s* Þ 0)
in the limit of a pure state (z → `). The algebraic equation (7.15) completes
our dynamical system and can be used for the determination of 8K in place
of solving the corresponding differential equation for the kinetic field. Obvi-
ously, the constant I* on the right-hand side of the Klein–Gordon case (5.31)
has now been substituted by the function of z defined by the right-hand side
of the present conservation law (7.15). This is an interesting result because
it implies that, in contrast to the Klein–Gordon case, the RST Zitterbewegung
comes in several modes, which we are now going to inspect in detail.

The emergence of different modes of solutions originates from the con-
straint (7.14), which admits the following solutions for z as a function of the
angular variable X:
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ez 5
i2 6 !i2

2 7 i2
1 6 cos2 X

i1 1 cos X

Hupper
lowerJ sign in the root term ⇔ Hpositive

negativeJ mixture (7.16)

Here it is easy to see that for the positive mixtures (s* 5 11) there are three
different ranges of the parameters {i1, i2} which admit solutions for the
present dynamical system: the “open” (i2 . i1 . 1) and “closed” (i1 . i2

. !i2
1 2 1) configurations and the limiting case between these two types,

i2 5 i1 (see Fig. 6). For all the other regions of the parameter space there

Fig. 6. Parameter space {i1, i2}. For the positive mixtures (s* 5 11) there are three different
ranges of the parameters i1, i2: open configurations (i2 . i1 . 1), limiting case (i2 5 i1), and
closed configurations i1 . i2 . !i2

1 2 1. For the limiting case with i1 5 i2 , 1 there occur
jump solutions, whereas for i1 . 1 the solutions are always of oscillatory character (i.e.,
Zitterbewegung).
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do not exist solutions for our dynamical system. Correspondingly, the func-
tional dependence of the internal variable z in terms of the angular variable
X is an open curve extending to infinity 2` , X , 1` (Fig. 7a), a closed
curve (Fig. 7b), or, as the intermediate case, a closed curve running through
infinity (Fig. 7c).

7.4. Zitterbewegung

Therefore with progression of cosmic time Q, both the variables z and
X are confined to a finite interval (Fig. 8b) for the closed case, whereas for

Fig. 7. Phase space of internal motion. Equation (7.16) describes three types of solutions for
positive mixtures: open (a), closed (b) and the limiting case (c). The jump solutions are due
to the limiting case with i1 , 1 (c), whereas the closed and open cases lead to Zitterbewegung
of oscillatory character.
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the open case X can grow in an unrestricted way (Fig. 8a). For the intermediate
case, the angle X remains finite, but z can extend up to infinity (Fig. 10).
Since by their very definition both charges e1 and e2,

e1 5 #
S3

(1)jm dSm 5 2p2 "

Mc
? (1)I* (7.17a)

e2 5 #
S3

(2)jm dSm 5 2p2 "

Mc
? (2)I* (7.17b)

are found to be equal for this intermediate case ((1)I* 5 (2)I*), which thus is
identified as a quasi-pure state [cf. the discussion below Eq. (6.53)]. This
different behavior of the phase angle X produces the corresponding distinc-

Fig. 8. Internal Zitterbewegung. For the open case (a), the angular variable X grows monotoni-
cally (roughly in steps of 2p); however, X is confined to a finite range for the closed case (b).
In both cases, the internal variable z is subject to oscillatory motion, namely either by virtue
of the monotonic growth of X for the open case (Fig. 7a), or by virtue of cycling around a
closed curve in phase space for the closed case (Fig. 7b).
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tions with respect to the pulse behavior of the kinetic field 8K, (7.3): for the
open case, the monotonic growth of X (Fig. 8a) implies that the kinetic pulses
are always positive and of quantized strength (* 8K dQ ' 2p), similar to
the Klein–Gordon theory (Fig. 4); but for the closed case, the oscillatory
behavior of X (Fig. 8b) must lead to a vanishing pulse strength: (* 8K dQ
5 0), so that the values of 8K(Q) become both positive and negative during
a pulse.

But from a more qualitative point of view, the pulse behavior of the
kinetic field looks very similar to the Klein–Gordon case (Fig. 4) and therefore
does not need to be reproduced here. The same is also true for the amplitude
field L(x) as a solution of the amplitude equation (7.4), which again looks
very similar to the Klein–Gordon analogue (Fig. 3). Finally, let us mention
that the closed universe recollapses for the mixtures in the same way as
encountered for the pure states, (see the Klein–Gordon case; Fig. 1).

In summary, we can say that the internal degree of freedom in RST
leads to a much richer structure of the Zitterbewegung in comparison to the
point-particle case of the Klein–Gordon theory. But there occurs an even
more striking phenomenon in RST, namely the jump solutions, which are of
nonoscillatory character and therefore do not have any counterpart at all in
Klein–Gordon theory.

7.5. Jumps

This completely new type of solution arises for a certain subset of the
quasi-pure states, i.e., when the internal charge z*, (6.31), vanishes. In genereal
the vanishing of z* 5 e2 2 e1 does not imply the local coincidence of both
currents (1)jm and (2)jm, but for our homogenous and isotropic situation, both
currents (1)jm and (2)jm must become identical just as a consequence of the
vanishing of z* [see the arguments leading to Eq. (7.11)]. In other words, for
our highly symmetric situation (i.e., the RW symmetry) the vanishing of the
internal charge z* implies the vanishing of the internal current (i)jm ([ (2)jm
2 (1)jm)! Observe, however, that this does not yet imply the “freezing” of the
internal degree of freedom [i.e., z ⇒ 0 in (6.53)].

On the other hand, not all of the quasi-pure states (i1 5 i2 5: i*) are
jump solutions. Indeed, the general relation (7.16) is specified nontrivially
for this type of solution to

ez 5
i* 2 cos X
i* 1 cos X

(7.18)

and this says that we must require .i*. , 1 (Fig. 7c) in order that the two
critical configurations with z 5 0 and z 5 ` be admitted kinematically. But
this restricts the range of the angular variable X to the interval p/2 # X #
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cos21 i* (see Fig. 9); and thus one expects that the dynamical evolution will
terminate at one or another of the critical field configurations with either z 5
0 or z 5 `. Indeed this expectation is verified by the numerical integrations
(Fig. 10). Additionally, one obtains here the result that the end configuration
(z 5 `) is reached after a finite time Qend depending upon the initial conditions.
The occurence of a finite transition time is easily understandable by means
of Eq. (7.2a): assume there that, in contrast to the internal variable z, the
other variables 5, 8L, X are changing slowly and then find the approximate
equation for the rapidly changing z (positive mixtures):

ż
sinh z

' const (7.19)

The asymptotic solution of this simple equation is

z(Q→Qend) ' 2ln(Qend 2 Q) (7.20)

(Qend 5 const)

which confirms the numerical result of a finite transition time Qend. Further-
more, observe that, when the initial configuration approaches the pure state
with z 5 0 (initial points 3 → 2 → 1 → . . . in Fig. 9) the variable z tends
to jump suddenly from its initial value (z 5 0) to the final value (z 5 `).

Fig. 9. Quasi-pure states. Jump solutions are obtained for the subset of quasi-pure states which
have i1 5! i2 7 i* , 1 [cf. (7.14) and (7.17)]. All such solutions starting at points 1, 2, 3, . . .
terminate after a finite time at z 5 `, which is a truly pure state. If one starts in the vicinity
of z 5 0 (also a pure state), there occurs a sudden jump to the final pure state at z 5 ` (Fig.
10). However the intermediate configurations are mixtures rather than pure states.
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Fig. 10. Jump behavior of the internal variable z. If the initial configuration (marked by n in
Fig. 9) approaches the pure state with z 5 0, the time behavior of z resembles more and more
a jumplike transition to the final pure state with z 5 `; cf. the deformation of solutions 3 →
2 → 1 → . . . .

Such a solution obviously describes a jumplike transition form one pure state
to another pure state through the space of quasi-pure states as a special subset
of mixtures (V “quantum jump”; Fig. 10).

The numerical integrations reveral also that the set of quasi-pure
states is itself endowed with a certain structure (Fig. 11). If the initial
configuration is close to the end configuration (z → `), e.g., 3 in Fig. 9,
then the amplitude field 8L (Fig. 11a) and kinetic field 8K (Fig. 11b) adopt
finite nonzero values at the endpoint (z 5 `), which is in agreement with
the Klein–Gordon conservation law (5.31) as the limit case (for z → `)
of the RST conservation law (7.15). But when the initial configuration
approaches the other pure state with z 5 0 (consider the sequence of initial
conditions 3 → 2 → 1 → . . . in Fig. 9) then the final value of the amplitude
field 8L tends to zero (Fig. 11a) and consequently the final value of the
kinetic field 8K (Fig. 11b) must tend to infinity as required by the Klein–
Gordon conservation law (5.31).

Finally, it is instructive to look at the energy density U and pressure
P (Fig. 12). Perhaps it may appear as a surprise that these objects behave
completely smoothly also for the jump solutions. Properly speaking, for a
true quantum jump one should expect also a jumplike behavior for U and
P. But for our present model, such a behavior is forbidden by the conserva-
tion laws. Remember that we have omitted the gauge interactions and thus
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Fig. 11. Amplitude field 8L and kinetic field 8K. For the limit case of a jump solution ({z 5
0} ⇒ {z 5 `}) the final value of 8L becomes zero; see curve 1 in (a). The conservation laws
(5.31) and (7.14) then demand that the final value of the kinetic field 8K must become infinite (b).

have restricted ourselves (but only for the sake of simplicity!) to the matter
subsystem. But by virtue of the conservation laws, the matter subsystem
must then be closed seperately [cf. (3.6)] which is also required in this
case by the Einstein equations (4.1)(V Bianchi identity [23]). But with
neglect of the gauge interactions we have no medium to carry away (or
carry in) energy-momentum from (to) the matter subsystem (e.g., in the
form of photons). Furthermore the RW symmetry, implied by the cosmolog-
ical principle, forbids the emergence of gravitons as a medium for the
transfer of energy-momentum to/from the matter subsystem. Thus there
remains only the mechanism of the work-energy theorem in order to change
the energy content of our symmetric matter arrangement (see Fig. 2).
Therefore, in view of such restricted possibilities of energy exchange for
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Fig. 12. Energy density U and pressure P. Since in our simplified model there is no medium
for transferring energy-momentum from/to the matter system, the external quantities U and P
behave strikingly smoothly during a jump process.

the matter subsystem, one should not be surprised about the relatively
slight changes of U and P during a quantum jump (Fig. 12).
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